2024年普通高等学校招生全国统一考试·仿真模拟卷(二)2理科数学试题

7

2024年普通高等学校招生全国统一考试·仿真模拟卷(二)2理科数学试题正在持续更新,目前金太阳答案为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。

得长一8,结合0>0及w=2十6k,k∈Z,可得w=2或w=8.当w=2时,x∈[臣号],2x一看∈[0,登1,g()=2sm(2x一吾)在[吾,号]上单调递增,符合题意:8.C将当。=8时xE[臣·吾],8x一看∈[受,经1,g)=2n(8x一吾)在[是,哥上不单洞,不符合愿意的横坐综上可知,w=2.有零清(2)由得gm=2m2x晋,当[0,21时,2-吾∈[-吾,2g1,g)[-1,21假设下面根据函数f(x)=x2一mx十1的对称轴来讨论f(x)的取值范围:∠w①当受<0,即m<0时,fx)在∈[0,1]上单调递增,fx)1,2-m],1m<0因为当∈[0,1]时,总有x∈[0,],使得f)=g(),所以1>-1,9.BC2-m≤2此不等式组无解;因为②当0<受≤1,即01,即m>2时,f(x)在∈[0,1]上单调递减,f(a)[2-m,1],因为当x∈[0,1]时,总有∈[0,1,使得f)=g(),项m>2所以以1≤2,解得20在实数集R上恒成立.当a<0时,△=/-ax2+2ax+342+12a<0,解得-30,满足题意;当a>0时,-ax2+2ax十3>0在R上不恒成13.立.综上,-3
扫码二维码